邮箱 English

人员 > 科研教学系列 > 李展

李展

Tenure-Track助理教授  

  • 简历
  • 科研
  • 教学
  • 发表论著

研究领域

代数几何,特别是双有理代数几何

 

工作经历

2018 至今  Tenure-Track助理教授,南方科技大学

2015 – 2018 助理教授,北京国际数学研究中心

2014 – 2015 博士后,约翰霍普金斯大学


教育背景

2009 – 2014 博士,罗格斯大学-新布朗斯维克

2005 – 2009 学士,天津大学


招生信息

招收硕士/博士/博士后,如果感兴趣,请发邮件询问详情(我对于招生比较慎重)。

研究领域

代数几何,特别是双有理代数几何。

南方科技大学

• 抽象代数 (荣誉课程), 2019 春. 

• 线性代数 I A, 2018 秋.

• 微分几何, 2018 春.


北京大学

• 微积分 C (医学院), 2015 秋.


约翰霍普金斯大学

• Lecturer, Math 106 Calculus I (for biological and social science), Fall 2014, Spring 2015.


罗格斯大学

• Recitation lecturer, Math 135 Calculus I (for biological science, business, economics and pharmacy), Spring 2014, Fall 2013, Spring 2011, Fall 2010.

• Recitation lecturer, Math 136 Calculus II (for biological science, business, economics and pharmacy), Spring 2012.

• Workshop lecturer, Math 151 Calculus I (for mathematical science, physical sciences, and engineering), Spring 2013, Fall 2011.

• Workshop lecturer, Math 152 Calculus II (for mathematical science, physical sciences, and engineering), Fall 2012.



论文及预印本

[1] (with Lev Borisov) On Clifford double mirrors of toric complete intersections, arXiv:1601.00809, Adv. Math. 328 (2018), 300–355.


[2] Counterexamples of Lefschetz hyperplane type results for movable cones, arXiv:1601.05546, Complex Manifolds, Volume 3, Issue 1 (2016), 207–210.


[3] On the birationality of complete intersections associated to nef-partitions. arXiv:1310.2310, Adv. Math. 299 (2016), 71–107.


[4] (with Lev Borisov) On complete intersections with trivial canonical class, arXiv:1404.7490, Adv. Math. 268 (2015), 339–349.


[5] On derived equivalence of general Clifford double mirrors, arXiv:1605.04530.


[6] (with Jingjun Han) On Fujita's conjecture for pseudo-effective thresholds, arXiv:1705.08862.


[7] (with Jingjun Han and Lu Qi) ACC for log canonical threshold polytopes, arXiv:1706.07628.


[8] (with Jingjun Han) On accumulation points of pseudo-effective thresholds, arXiv:1812.04260.


[9] (with Jingjun Han) Weak Zariski decompositions and log terminal models for generalized polarized pairs, arXiv: 1806.01234.


[10] Fujita's conjecture on iterated accumulation points of pseudo-effective thresholds, arXiv: 1812.04262.