人员 > 教学人员 > 何炳生

何炳生

教授  

方向:◆ 最优化理论与方法,线性与非线性规划, 运筹学中的数学方法 ◆ 变分不等式的投影收缩方法, 凸优化的分裂收缩算法

办公室:慧园3栋526

0755-88018721

何炳生,1978年2月进入南京大学数学系学习,本科毕业后公派去联邦德国留学,取得 Wuerzburg大学博士学位后于1987年开始在南京大学数学系工作。1997年晋升为教授,1998年评为博士生导师。江苏省有突出贡献的中青年专家,独立获得江苏省科技进步一等奖,并享受国务院特殊津贴。长期从事最优化理论与方法的研究,在一个简单统一的框架内研究凸优化和变分不等式的分裂收缩算法。发表论文70 余篇,代表性论文发表在 Math. Programming 和 SIAM 系列刊物上。

主要成果为凸规划和变分不等式的分裂收缩算法。部分成果被包括美国科学院院士、工程院院士和《世界数学家大会》大会邀请报告人在内的国际著名学者大篇幅引用并介绍。 2014 年10月获《中国运筹学会科学技术奖》运筹研究奖。


研究领域:

◆ 最优化理论与方法,线性与非线性规划, 运筹学中的数学方法

◆ 变分不等式的投影收缩方法, 凸优化的分裂收缩算法


工作经历:

◆ 1987 年,南京大学数学系讲师。

◆ 1992 年,南京大学数学系副教授

◆ 1997 年,南京大学数学系教授

◆ 2013 年,南京大学工程管理学院教授

◆ 2015 年,南方科技大学数学系特聘教授


学习经历:

◆ 1963 年 ------ 1966 年, 江苏省南菁高级中学

◆ 1978 年 ------ 1982 年, 南京大学本科

◆ 1983 年 ------ 1986 年, 联邦德国 Wuerzburg 大学研究生


所获荣誉:

◆ 2000 年获美国 ISI 颁发的 经典引文奖

◆ 2001 年独立获得江苏省科技进步一等奖

◆ 2002 年获国务院颁发的政府特殊津贴

◆ 2003 年度江苏省有突出贡献的中青年专家

◆ 2014 年获《中国运筹学会科学技术奖》运筹研究奖

◆ 2016 年获第一届江苏省工业与应用数学奖突出贡献奖


代表性文章:

◆ B.S. He, F. Ma and X.M. Yuan, Convergence Study on the Symmetric Version of ADMM with Larger Step Sizes, SIAM J. Imaging Science 9:1467-1501, 2016.

◆ B.S. He, H.K. Xu and X.M. Yuan, On the Proximal Jacobian Decomposition of ALM for Multiple-Block Separable Convex Minimization Problems and its Relationship to ADMM, J. Sci. Comput. 66 (2016) 1204-1217.

◆ C.H. Chen, B.S. He, Y.Y. Ye and X. M. Yuan, The direct extension of ADMM for multi-block convex minimization problems is not necessary convergent, Mathematical Programming, 155 (2016) 57-79.

◆ B.S. He and X.M. Yuan, On non-ergodic convergence rate of Douglas-Rachford alternating directions method of multipliers, Numerische Mathematik, 130: 567-577, 2015.

◆  B.S. He and X.M. Yuan, Block-wiseAlternating Direction Method of Multipliers for Multiple-block Convex Programming and Beyond, SMAI J. Computational Mathematics 1 (2015) 145-174.

◆ B.S. He, L.S. Hou, and X.M. Yuan, On Full Jacobian Decomposition of the Augmented Lagrangian Method for Separable Convex Programming, SIAM J. Optim., 25 (2015) 2274–2312.

◆ B.S. He and X. M. Yuan, On the convergence rate of Douglas-Rachford operator splitting method, Mathematical Programming, 153 (2015) 715-722.

◆ E.X. Fang, B.S. He, H. Liu and X. M. Yuan, Generalized alternating direction method of multipliers: new theoretical insights and applications, Mathematical Programming Computation, 7 (2015) 149-187.

◆ B.S. He, M. Tao and X.M. Yuan, A splitting method for separable convex programming, IMA J. Numerical Analysis, 31: 394-426, 2015.

◆ B. S. He, Y. F. You and X. M. Yuan, On the Convergence of Primal-Dual Hybrid Gradient Algorithm, SIAM. J. Imaging Science 7: 2526-2537, 2014.

◆ B.S. He, H. Liu, Z.R. Wang and X. M. Yuan, A strictly Peaceman-Rachford splitting method for convex programming, SIAM J. Optim. 24: 1011-1040, 2014.

◆ G.Y. Gu, B.S. He and X.M. Yuan, Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a unified approach, Comput. Optim. Appl., 59: 135-161, 2014.

◆ X.J. Cai, G.Y. Gu and B.S. He,  On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators, Comput. Optim. Appl., 57: 339-363, 2014.

◆ B.S. He, X.M. Yuan and W.X. Zhang, A customized proximal point algorithm for convex minimization with linear constraints, Comput. Optim. Appl., 56:559-572, 2013.

◆ B.S. He and X.M. Yuan, Forward-backward-based descent methods for composite variational inequalities, Optimization Methods Softw. 28: 706-724, 2013.

◆ X.J. Cai, G.Y. Gu, B.S. He and X.M. Yuan, A proximal point algorithms revisit on the alternating direction method of multipliers, Science China Mathematics, 56 : 2179-2186, 2013.

◆ B.S. He, M. Tao and X.M. Yuan, Alternating Direction Method with Gaussian Back Substitution for Separable Convex Programming, SIAM J. Optim. 22: 313-340,  2012.

◆ B.S. He and X.M. Yuan, On the $O(1/n)$ Convergence Rate of the Douglas-Rachford Alternating Direction Method,SIAM J. Numer. Anal. 50:  700-709,  2012.

◆ B.S. He and X.M. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point problem: From contraction perspective, SIAM J. Imag. Sci., 5,:119-149, 2012.

◆ C.H. Chen, B.S. He, and X.M. Yuan, Matrix completion via alternating direction methods, IMA J. Numer. Anal., 32: 227-245, 2012.

◆ B.S. He, L.Z. Liao, and X. Wang, Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods, Comput. Optim. Appl., 51: 649-679, 2012

◆ B.S. He, L.Z. Liao, and X. Wang, Proximal-like contraction methods for monotone variational inequalities in a unified framework II: General methods and numerical experiments, Comput. Optim. Appl.  51: 681-708, 2012

◆ B.S. He, M.H. Xu, and X.M. Yuan, Solving large-scale least squares covariance matrix problem by alternating direction methods, SIAM J. Matrix Anal. Appl., 32 ,136-152, 2011.

◆ B.S. He, L-Z Liao and S.L. Wang, Self-adaptive operator splitting methods for monotone variational inequalities, Numerische Mathematik, 94: 715-737, 2003

◆ B.S. He, L-Z Liao, D.R. Han and H. Yang, A new inexact alternating directions method for monotone variational inequalities,  Mathematical Programming, 92: 103-118, 2002

◆ B.S He and L-Z Liao, Improvements of some projection methods for monotone nonlinear variational inequalities, J. Optimization Theory and Applications, 112: 111-128,2002

◆ B.S. He, H. Yang and S.L. Wang, Alternating directions method with self-adaptive penalty parameters for monotone variational inequalities, Journal of Optimization Theory and applications, 106: 349-368,  2000.

◆ B.S. He and H. Yang, A neural network model for monotone asymmetric linear variational inequalities, IEEE Transactions on Neural Networks, 11: 3-16, 2000.

◆ B.S. He, Inexact implicit methods for monotone general variational inequalities, Mathematical Programming, 86: 199-217, 1999.

◆ B.S. He, A class of projection and contraction methods for monotone variational inequalities, Appl. Math.  Optimization, 35: 69-76, 1997.

◆ B.S. He, A new method for a class of linear variational inequalities, Mathematical Programming, 66: 137-144, 1994.

◆ B.S. He, Solving a class of linear projection equations, Numerische Mathematik, 68: 71-80, 1994.

◆ B.S. He and J. Stoer, Solution of projection problems over polytopes, Numerische Mathematik, 61: 73-90, 1992.

◆ B.S. He, A projection and contraction method for a class of linear complementarity problems and its application in convex quadratic programming, Applied Mathematics and Optimization, 25: 247-262, 1992.